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The equations describing the diffusion time scale evolution of a tokamak separate into 
two types, a 2D elliptic equation and a set of 1D parabolic equations. The equations are 
coupled in that the 1D set provides the inhomogeneous source for the 2D equation, while the 
2D equation provides both the source and the geometry for the ID set. The G2M code 
solves these equations on a moving orthogonal coordinate system with the grid lines tied 
to magnetic flux, as a Lagraogian formulation of fluid mechanics ties the grid to the fluid. 
The techniques required to do this are described, and examples of code runs are presented. 

I. INTRODUCTION 

The energy crisis has sharpened the longstanding interest in fusion reactors. Such 
reactors would “burn” hydrogen isotopes rather than fission uranium as do present 
nuclear reactors, and would be a way to produce nuclear power without generating 
fission products. The advantages of fusion power are discussed in a recent review 
article by Ribe [l]. 

One of the most interesting of the many devices proposed as possible fusion reactors 
is the tokamak, a toroidal machine with a current-carrying hot plasma. The concept 
is described by Artsimovich [2], the U. S. tokamak effort is reviewed by Dean et al. [3], 
and recent developments are covered by Furth [43. Briefly, the idea is to take advantage 
of the fact that the ionized hydrogen tends to resist diffusion of mass and heat across 
a strong magnetic field. This field can be produced by an electric current flowing in the 
plasma itself. There are no end losses, because of the toroidal geometry. A strong 
toroidal magnetic field, produced by current windings outside the plasma, renders the 
plasma magnetohydrodynamically stable. 

The ideal field configuration is that of a family of nested magnetic surfaces, field 
lines spiraling around the torus but always remaining on a particular toroidal surface. 
These are referred to as flux surfaces. Other field geometries (magnetic islands, for 
example) are conceivable but we will restrict ourselves to consideration of this 
topology. Figure 1 illustrates the field helices and Fig. 2 illustrates flux surfaces. 

Transport of heat or mass in a plasma is much easier along a strong magnetic field 
line than across it. For irrational pitch of the magnetic helices any point on a flux 
surface can be approached arbitrarily closely in a finite distance by traveling along a 
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FIG.’ I. Magnetic field helices around a section of the torus. 

Fig. 2. Nested flux surfaces. 

field line starting from any other point on the surface. Therefore density and tem- 
perature variations are expected to be less in a flux surface than across flux surfaces, 
an interesting feature of this geometry. We may ignore toroidal variation because of 
the symmetry of the device, but it is the physics that will allow us to ignore variation 
of density and temperature in the flux surface. 

Chu et al [5] discuss the numerical difficulties caused by the enormous anisotropy 
of heat diffusion in a magnetized plasma. These difficulties are obviated by the use of 
flux surfaces as coordinates. This and the constancy of density and temperature on 
these surfaces have led us to adopt flux surface coordinates. 

Another feature of the machine is the large separation of time scales. Grad and 
Hogan [6] discuss in particular the diffusion time scale with which we shall be con- 
cerned. On this time scale the fast magneto-hydrodynamic (MHD) activity has died 
away, the configuration being assumed MHD stable. The plasma and field are then in 
equilibrium. This determines the shapes and positions of the flux surfaces. These can 
still change as the determining parameters evolve. This evolution is assumed to 
proceed on a considerably slower time scale than that describing MHD activity. 
Diffusion resulting from collisions can produce such changes. 

The laws of conservation of magnetic flux, mass and energy, coupled with a 
transport theory of diffusion, give a complete description of the evolution of current, 
density, and temperature. This description can be reduced to a one-dimensional (1D) 
one, since the relevant parameters change only across flux surfaces. A knowledge of 
the shapes of the flux surfaces is required for the solution of the resulting equations. 
Although it is not strictly consistent to do so, it is possible to assume this knowledge a 
priori. Many 1D codes have been written using essentially this model (for a review, 
see Hogan’s article [7]). 

In fact the shapes are determined by the solution of this 1D problem, supplemented 
by boundary conditions and the statement of force balance in the plasma. Therefore a 
consistent calculation is possible, with the shapes changing in response to diffusion 
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and the diffusion being influenced by the instantaneous shapes. A two-dimensional 
(2D) calculation is thus required, shapes being inherently 2D. This was pointed out 
by Grad [8], Hinton and Hazeltine [9], and others, and forms the basis of the G2M 
code described herein. Other codes based on this principal have been reported by 
Helton, Miller, and Rawls [IO] at General Atomic, Todd and Grimm [I l] at Princeton 
Plasma Physics Laboratory, and Gardner and Boris [12] at the Naval Research 
Laboratory. 

Although the mathematical structure of a tokamak code is imposed by the problem, 
the details of the transport process are still not completely worked out. The current 
status of tokamak transport theory is reviewed by Hinton and Hazeltine [9]. These 
authors [13] have presented an elegant solution for the flux surface averaged transport, 
valid in the “collisional” Pfirsch-Schltiter regime. We have used their results in 
G2M, since they are for general geometry, and since this regime is accessible to 
experiment using existing machines. 

With the restriction to Pfirsch-Schltiter transport the problem is completely 
stated.l The remainder of this paper discusses the above ideas in more detail and 
demonstrates a technique for solving the problem on a computer, concluding with 
some examples of the sort of problems that can now be solved. 

II. DEFINITIONS AND BASIC EQUATIONS 

We consider a plasma composed of electrons and ions. The electrons have density 
IZ, , temperature T, , and pressure P, = n,kT, , where k is Boltzman’s constant. 
Similarly, the ions are described by ni , Ti , and Pi . The ions are a mixture of various 
atomic species such that the average charge is Z. This and the average square charge, 
??, are constant in space and time. 

There is a flux of electrons, IYe ; the corresponding flux of ions maintains charge 
neutrality. Ionizations provide a source S of electrons. Heat is conducted by the 
electrons and ions, the fluxes being Q, and Qi . The two species exchange energy at 
the rate Qd . The electric field E delivers energy to the plasma at the rate j * E, where 
j is the current. Hi of this power goes directly to the ions, the rest goes to the electrons. 
R, and Ri denote all other local energy gains or losses, due for instance to line radia- 
tion, charge exchange, ionization, or auxiliary heating devices. 

These quantities are related by conservation laws. The statement of electron con- 
servation is 

Charge neutrality gives the ion density 

ni = 2 
Z 

(2) 

1 The reader is referred to a recent paper [14] of Pao for an alternative view of the problem. 
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Electron energy is #P, . Its conservation law is 

(3) 

For ions we have 

The plasma is permeated by a magnetic field B, related to the current by Ampere’s 
law 

VxB=$j 

Conservation of magnetic flux is expressed by Faraday’s law 

aB -= 
at -cVx E 

On the long time scale with which we shall be concerned the system passes through a 
succession of equilibria as plasma and field slowly diffuse. This implies that current, 
field and total pressure, P = P, + Pi , are related by the law of force balance 

j x B = cVP (7) 

It is advantageous to use cylindrical (r, q~, 2) coordinates, because of the toroidal 
symmetry of tokamaks. The toroidal angle IJJ is therefore ignorable (a/+ = 0). 
Further simplification results from expressing B in terms of the two scalar variablesf 
and #, wheref = rB, and # is the poloidal flux. That is, 

B=fVy+VyxVt,h 09 

This form automatically satisfies 

V-B=0 (9) 

Faraday’s law, Eq. (6), relates 4 to E, , to within a constant of integration, which we 
choose to be zero: 

z,h = rcE, wo 

Flux surfaces are surfaces of constant #. Since magnetic field lines lie in flux surfaces 
and since many of the variables of interest are constant on flux surfaces, it is con- 
venient to use a coordinate system having # as a coordinate. We choose v as a second 
coordinate, because of the toroidal symmetry. x, the poloidal coordinate, is chosen 
mutually orthogonal to # and y. The coordinate systems used are illustrated in Fig. 3. 
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FIG. 3. Coordinate systems. 

III. EQUATIONS TO BE SOLVED 

Force balance, Eq. (7), together with Ampere’s law Eq. (5), imply that P and fare 
constant on a flux surface. They also imply 

1 a~ i af 
v7q+475q+7f‘~=o (11) 

Equation (11) is referred to as the Grad-Shafranov equation [15, 161. It will be the 
single 2D equation the code must solve. 

The particle and energy conservation laws, Eqs. (l), (3) and (4), are basically one- 
dimensional. To see why, note that variation of the temperatures is small along the 
field lines because of the large heat conductivity along the magnetic field lines. We 
have taken n, to be a constant multiple of ni , so the constancy of total pressure then 
implies that the particle densities are also constant on a flux surface. To this approxi- 
mation, then, P, and Pi are separately constant on a flux surface. 

We wish to extract a set of equations that explicitly displays this one-dimensionality. 
First, rewrite the equations in the (#, q, x) coordinate frame, which moves because # 
changes with time according to Eq. (10). Second, eliminate references to x by averaging 
the equations over a small volume surrounding a flux surface. These two steps require 
the introduction of some new quantities. We shall discuss these before presenting the 
resulting ID equations. 

Time derivatives in this frame will be denoted by D/D& thus 

D+ 0 -= 
Dt w 
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expresses the fact that this frame moves such that tj remains constant on a grid line. If 
vG is the velocity of the grid, 

~+vc’v~=o (13) 

Equations (8), (10) and (13) then imply 

(v,&, = c + 
x 

Thus there is no toroidal electric field in the frame that moves with the grid: 

E+ = 0 

(14) 

(15) 

The electron flux relative to this grid is due solely to collisions and will be denoted I’~ . 
It satisfies 

rc = r - nevG (16) 

The grid velocity also enters the expression for the power delivered by the fields: 

c af j*E=--zqE~B+~G-VP 

we assign vG ’ VP, of this power to the ions, the rest to the electrons, so 

Hi = VG ’ VP, (18) 

This expression for j - E is consistent with that of Hinton and Hazeltine [9] and may 
be derived from Ampere’s law, Eq. (5), force balance, Eq. (J), and the definition of vG . 

Finally we define the volume average of a quantity over a surface. Let I’(#, t) be 
the volume contained within a # surface per radian of toroidal angle. We shall 
sometimes denote # derivatives by primes, in particular: I” = aV/a#. The flux 
surface average of a quantity A is defined by 

(A) = & J‘, A d% 

where the integral is over the volume contained within a flux surface. This average 
has the property that (B * VA) = 0 for any A. Using Gauss’ theorem one can show 

a 
(V-A) = w(A47V> (20) 

for any vector A. 
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Using the above definitions, we average the conservation laws, Eqs. (l), (3) and (4), 
over the moving # surfaces to find the desired one dimensional set of conservation 
laws:2 

DnV’ a 
Dt + v <r, * vv) = <s> v’ 

+ 6 ((Qe + ; kT,r,) . vv) 

= ( - &YE l B) - QA + <&)) V’ 

;EgZ+pig 
+ + ((Qi + ; WW) l VJ’) = (QA + <R,)) V’ (23) 

A similar treatment of the toroidal component of Faraday’s law, Eq. (6), expresses 
conservation of toroidal flux: 

Dt 
a 

+ q v’<cE * B) = 0 (24) 

The quantity in parenthesis in the above equation, divided by 27r, is known as the 
safety factor q. It measures the number of toroidal circuits a field line takes per 
poloidal circuit. 

As we shall see, lYC, the Q’s, and E * B are due to collisions. In their absence, 
Eqs. (21)-(24) reduce to the adiabatic set 

(26) 

This clearly displays the effect of adiabatic compression, namely that particles, 
entropy, and safety factor are all conserved. 

Hazeltine and Hinton [13] quote specific results for the fluxes needed, in the 
P&sch-Schliiter regime. Let c = speed of light, e = electron charge m = electron 

a See Appendix A for details of the derivation. 
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mass, M = ion mass, 7 = electron-ion collision time, ri = ion-ion collision time. 
hij are numerical factors depending on the ratio ?/Z. 

<r, - VV) = V’ ((&) - &)(- fg-)(+ P’ - ;+ n.kT,‘) 

+ v’fcn (E ‘B) * <B2> (29) 

<Qe l vv) = V’ (($)- &)(- -f-$ kT.)g + n,kT,’ - ; -+ P’) (30) 

(Qi . vv) = V’ ((> - &)(-1.6 F) PikTi (31) 

The generally smaller classical transport terms have been neglected in Eqs. (29)-(31). 
The electron-ion heat exchange is the classical value [17, 181 

QA = T $ (T, - Ti) (32) 

The electron energy conservation equation (22) and the flux conservation equation 
(24), require a knowledge of (E . B). We use an Ohm’s law of the form [18] 

E+ 
VxB VP -++ jxB AB(B . VkTJ 3 1 B x VkT, --- 

c en, 
=q-j+z-- eB2 2 em IBI (33) I 

where h is a function of the ionic charge, w is the electron cyclotron frequency, and q 
is the resistivity tensor. The use of this form of Ohm’s law is consistent with the 
calculation by Hazeltine and Hinton [13] of transport coefficients in the PGrsch- 
Schhiter regime. 

This gives 

<E*B)=T&*B) (34) 

where 17 o is the parallel component of the resistivity tensor. 
Notice that Eqs. (21) - (24) contain no advective terms, i.e., no first derivatives 

(in $) of the quantities of interest n, P, , Pi, orf. The presence of such terms can lead 
to artificially enhanced diffusion in numerical solutions to the conservation laws. The 
use of a moving grid to eliminate these terms is reminiscent of the use of Lagrangian 
grids in fluid mechanics. 
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The calculation of j e B will be performed in the (4, v, x) coordinate system. The 
components of the current can be obtained from Ampere’s law, Eq. (5): 

(35) 

j, = 0 

The components of the magnetic field can be obtained from Eq. (8). 

(37) 

B, =; (38) 

B, = 0 (40) 

It will be useful to introduce Grad’s K function [ 191. K is defined by 

av = ((Jg’) (41) 

Note that K depends only on the shapes of the flux surfaces enclosing volume V and 
not upon the physical variables. We find 

<j * B) = W,) + (j,W = 2f( V - $ W) - ~.f’<B,3 (42) 

Using Gauss’ law, equation (20), and the definition of K, Eq. (41) 

(43) 

An aiternate expression for (j * B) follows from replacing V . (l/r”) V# in equation 
(42) with its value as determined by the Grad-Shafranov equation, (11): 

(j - B) = -cfP’ - -&Jr’ (-&- $-) (44) 

We find a useful form of the flux surface averaged toroidal current by applying 
Gauss’ law to equation (35): 

(45) 
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This form shows that K/V’ is the toroidal current contained within the flux surface of 
volume V, times 477/c. 

In conventional tokamaks the plasma does not appreciably affect the field, so in the 
code BX2 is neglected with respect to Bm2, and Eqs. (43) and (44) become 

(j . B) = -cfP’ - $-/jr (-$) 

This completes the set of differential equations to be solved on the computer. The 
fundamental ones are Eqs. (21)-(24). We should like to emphasize that the form of 
these equations is quite general, being based on conservation laws and on the assump- 
tion that n, T, , and Ti can be replaced by their flux surface averages. The form of the 
transport terms Q, V, etc., would of course be different if different physical processes 
(e.g., turbulence) were considered. 

IV. BOUNDARY CONDITIONS 

The 1 D equations, (21)-(24), require for consistency the internal boundary condition 
that n, , P, , Pi, andfremain finite at the magnetic axis, Y = 0. Their values, or the 
fluxes r, Q, (E * B), will be specified as functions of time on the outer boundary. 

The fluxes given by Eqs. (29) and (34) do not vanish at the axis. This is because 
these fluxes are with respect to a moving flux surface. The magnetic axis, however, is 
not a surface of constant #. The appropriate fluxes there are those with respect to a 
fixed surface. The particle flux is then [cf Eq. (16)]: 

(r * VV) = (r, * VV) + 12,(VG - vv> (464 

= <r, . vv) - n,cV’f + 
( > m 

(46~) 

At the axis E, and B, vanish, so upon substituting for rc from Eq. (29) one finds that 
the particle flux is in fact zero on the axis. 

The heat fluxes, given by Eqs. (30) and (3 l), are independent of the reference frame, 
and hence valid on the axis in that form. They also are seen to vanish there. 

The flux of safety factor given by Eq. (34) does depend on the reference frame. 
Faraday’s law for a fixed grid requires the integral of E,B, , not E * B. Clearly E,B, 
vanishes on the axis. 

Specification of # on a closed surface W containing the plasma is a sufficient 
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boundary condition for the solution of the Grad-Shafranov equation, (11). Equation 
(10) shows that specification of &(t) is equivalent to specifying the loop voltage 
applied. Because Eq. (11) is to be solved simultaneously with the 1D set, Eqs. (21)-(24), 
the total current contained in the system depends on this applied voltage. 

Experience has shown that it is preferable to specify the total current carried by 
the plasma rather than the voltage applied. This is in accord with the results of the 
simple model 

dT 
-T+ VI 

dt= T+ (47) 

I= T*V (48) 

The resulting temperature T is stable to perturbations if the current I is fixed, and 
unstable if the voltage V is fixed. 

Therefore, for boundary conditions on the system, we fix the location of the outer- 
most flux surface and specify the total current 1(t). &, is determined parametrically. 

V. NUMERICAL SCHEME 

We have seen that the essential features of a tokamak, on the long time scale, are 
represented by a set of four parabolic 1D equations, to be solved simultaneously with 
an elliptic 2D equation. 

In this section we discuss: first the numerical method used to solve the 2D Grad- 
Shafranov equation, second the methods used to solve the 1D equations, and third 
the method used to solve both self-consistently. 

The Grad-Shafranov equation, (1 l), determines 4 given the functions P(4) andf($). 
The scheme used to solve this equation is an iterative one suggested by Potter and 
Tuttle [20,21]. An (i,j) grid is defined: thejlines are to be contours tij = constant. A 
contour grid is inherently more accurate than a rectangular grid because a rectangular 
grid must resolve gradients skewed to the mesh, and because the contour grid concen- 
trates in regions of large gradients. Therefore, the number of grid lines required for a 
given accuracy is less on a contour grid; one has resolution where needed without 
paying the price of fine spacing everywhere. 

The problem has been converted into one of finding the position of the contours, 
as in Lagrangian hydrodynamics, although here the location of the i lines is arbitrary. 

The spatial derivatives of the Grad-Shafranov equation contain mixed i, j derivatives 
in general. These vanish if the i lines are chosen orthogonal to thej lines ($ contours), 
and the resulting form suggests simple difference approximations that can be solved by 
standard techniques, such as ADI. We therefore use Potter and Tuttle’s elegant 
orthogonalization technique [22] to define the lines of i. The coordinate system is 
thus (j, y, i), where i andj play the roles of the x and # coordinates of Fig. 3. 

The iterative process begins with an assumed location of the j lines. The functions 
P’W and ff’(t4 are replaced by Pj’ = P’(#J and ff?‘. We of course know ri3 , the 
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radial position of the grid points. Under these assumptions we know the current j, at 
every grid point: 

We now solve 

As mentioned previously, the operator is diagonal in this coordinate system. Let 
hi , hj be the metric functions on the grid, so that h,di is the distance separating two 
points on a j line at (i) and (i + di). Then (49) and (50) become 

1 - -- 
rhihj [ 

The result of differencing this equation is a matrix equation 

Hi,b+Va,+S=O (52) 

where H is the matrix that connects #(i, j) with $(i &l, j), V connects $(i, j) with 
#(i, j -&l), and S is everything else. This matrix equation may be solved exactly, for 
example by Gaussian elimination. However, we choose the AD1 technique [23]. We 
introduce an iteration scheme producing a series of approximate solutions p. A 
damping factor D is needed for convergence; the final answer does not depend on D. 

Let #* solve the one-dimensional set of equations 

HP + V#* + S + D(#* - p) = 0 (53) 

Then let #** solve the one-dimensional set of equations 

H#** + Vt,b* + S + D(#** - #*) = 0 (54) 

and let 

Manipulation gives 

f&/)+1+ vf+l+s=-E(f+l-@) 

The error matrix E is 

E=D+V$H 

This implies 

(55) 

(56) 

(57) 

(58) 
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where the annihilation matrix A is 

A= 
1 

V+H+EE 

This procedure converges if II A jj < 1. This is so for any negative constant D for the 
case of Laplace’s equation in a rectangle, and in fact the scheme is observed to 
converge for negative D in this case of the Grad-Shafranov equation on a torus. 

The discussion to follow will consist of more or less heuristic considerations 
governing the choice of D(j). We repeat for emphasis that the answer obtained by the 
iterative AD1 scheme is independent of D. The convergence properties, however, do 
depend on D. An ill-advised choice will lead to poor convergence or even to no 
convergence. Setting D to zero, for examIjle, produces a divergent series of approxi- 
mants +P, as can be seen by inspection of the error matrix E, Eq. (57). 

The approximations to follow are used only to suggest appropriate D’s; the equa- 
tions the code solves are as given above. 

We have used several choices for D. One is to set D roughly equal to 2/ VH, by 
taking 

where b is a numerical factor of order 1 chosen to optimize convergence. This value 
of D is used in the calculation of the initial equilibrium. To derive another choice, 
observe that an increase of Z,!I on one grid line j, implies a contraction of the volume 
of the plasma inside the flux surface labelled by the original value of zJ. This then will 
change P’ and f' since the transport (conservation) equations depend on this volume 
To estimate the amount of feedback generated by this, integrate the toroidal flux 
Eq. (24), over #. Let I# be the toroidal flux contained inside flux surface 4: 

Then Eq. (24) becomes: 

4 = Jr(f) V’G (61) 

$t + c<E . B) V’ = 0 (62) 

Nowfis reasonably constant in a tokamak, where B, is almost entirely due to external 
windings. (l/r2) does not have much variation either, being about l/R2, where R is 
the major radius. Thus we can, roughly, set 

kf, V’d# = f V(l)) 

Also, we have from Eqs. (34) and (44a): 

c<E . 3) = - $(47~P’ + ff’ ($)j (64) 

(63) 
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(65) 

Since 

we have 

St) E --At $$ R26 (4?rP’ +ff’ ($)) (67) 

We now see that if the value of # on a j-line changes by an amount S# there will be a 
resulting change in bP’ + (ff’/r2) as a result of the conservation laws. Let z+P be the 
value assumed for $ on the j-line and used to calculate P andf. Then 

V .f V# $ (4np'f $&), - (?IC2,4j]dfR2 ($!'- $@)=' (68) 

is the proper equation. This gives 

In practice this is too large a damping factor, and the code requires many iterations 
per timestep. This is because this function successfully corrects for those errors which 
have #id too large (or small) for all i, but overestimates the effect on 4rrP’ +ff’/r” of 
higher mode errors. It suffices to use a damping factor of, say .Ol times that of Eq. (69). 
Notice that this D is inversely proportional to the timestep, whereas that given by 
Eq. (60) does not involve At. Either form has been found satisfactory. 

This completes the discussion of the numerical method used to solve the 2D Grad- 
Shafranov equation. We now turn our attention to the numerical solution of the 1D 
conservation equations, (21)-(24). 

Integrate these equations over 4 to find a form suitable for differencing. In general, 
for any function a(#, t), 

We will substitute for a the quantities nV’ , $P,V’, #PiV’, and f (l/r2) V’, in turn, to 
obtain integral forms of the conservation laws. The lower (&) and upper (h) bounds 
of the region of integration will in general be constant in time. 

There are two regions, however, for which this is not so: the innermost and the 
outermost ones. The lower limit of integration of the innermost region is the value of 
+ at the magnetic axis, a function of time. The upper limit of the outermost region is 
the value of # at the plasma boundary, determined by the specification of total 
plasma current as discussed above. 
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The effect of the da,b/dt terms is to convert the fluxes to those measured on a tied 
grid, at the appropriate boundary. We take advantage of this at the origin, where the 
fluxes then vanish. At the outer boundary we retain d$/dt explicitly in order to use the 
fluxes in the moving frame; these fluxes have the attractive feature that they vanish in 
the absence of collisions. 

We label the flux surfaces byj; the magnetic axis isj = 1 and the outer boundary is 
j = jm. The conservation laws apply to the volume d Vi++ between surfaces j and 
j + 1, the physical quantities are also defined at j + 4. Their fluxes (I’, etc.) are 
defined on the j surfaces. The resulting difference equations are: 

a) the innermost set, j = 1 

= 
(( - &f’E * B - QA + &) AV)+ (72) 

(71) 

; ( ““,:‘“,, + (CT)t + ((Qi + ; Id'/%) - vv), 

= <<QA + R,) A v>+ (73) 

+ <cV’E - B), = 0 (74) 
t 

b) the general set, j = 2 to jm - 2 

+ a - vV),+~ - PC - VV>j = (W A Vj++ (75) 

i ( dp>fv)j+t + (pe q)j+t + ((Qe + g Cr,) - VV),+, 

- 0 Qe + ; ‘-) ’ w)j = ((Sf’E - B - Qd + R$ Av)~++ (76) 

g ( dp$v)j+t + (pi $?)j++ + ((Qi + 4 kW%) - VV),+~ 

((Qi + ; WC) * Vv>j = (<QA + Ri) A J’h++ 

+ (cV’E * B)j+l - (cV’E * B)j = 0 
j+1 

(77) 

(78) 



2D TOKAMAK CODE 367 

c) the outermost set, j = jm - 1 

eF-~jm_, + (r, - VV)j, - (r, . VV)j& = ((S) AV)j,-4 + (tzV’)j, * 
(79) 

- ((Qi + g kT,P,) . vv) 
h-1 

= ((QA + Ra) A%,-, + ; (PiV’)j, % V-31) 

(df($PV) 
jm-r, + <cV’E * B&n - <cV’E * B&,-l = (f(+) vjjm + 

(82) 

These difference equations reduce to a 4 x 4 block tridiagonal set when the deriva- 
tives appearing the fluxes, Eqs. (29)-(31), (34), (44), are replaced by their difference 
analogues. We use the fully implicit “backwards” time centering for these equations, 
so their solution requires the inversion of a block tridiagonal matrix. 

From time to time the innermost cell becomes too small in comparison with the 
others. When this happens, this cell is combined with the next one, the number of 
cells in the problem decreasing by one. Conversely, the growth of the outermost cell 
requires that it occasionally be split into two cells, the total number of cells thus 
increasing. 

The method of solution of the 2D equation and the 1D set of equations has been 
described. The equations are coupled implicitly. In particular, the 1D set requires 
knowledge of V(#, r), determined by the solution of the 2D equation. The 2D equation, 
in turn, requires knowledge of P and f, which are advanced in time by the 1D set. In 
order to solve both the sets simultaneously we use a subsidiary calculation for V, 
explicitly displaying its time dependence. 

To obtain this equation, combine the flux surface average equations representing 
Faraday’s law (24), Ohm’s law (34) and Ampere’s law (43). We find 

K and (l/r2) may be regarded as functions of V, changing in time only because the 

58112613-S 
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shape of the Aux surface containing volume V changes. We will assume that the shapes 
change slowly. K and (l/r2), being integrals over the surface, change even more 
slowly. The function f is also relatively slowly changing, since in tokamaks f is pri- 
marily due to the external windings with steady currents. The resistivity 7 ,, is assumed 
known. 

Iff, (l/r2), and K are known functions, Eq. (83) tells us dV’/dt in terms of deriva- 
tives of V’. The boundary conditions are that K vanishes at the magnetic axis, which 
follows from its geometric definition, Eq. (41), and that at the wall 

where I is the toroidal current contained in the plasma, which follows from Eq. (45). 
We need to specify the range of integration of Eq. (83) in yG space. At the magnetic 

axis E and B both have only y components, so Eqs. (lo), (34), and (45) combine to 
give an equation for d#ldt at the origin: 

The volume contained within the flux surface 4 satisfies 

Since we have assumed we know the location of the outermost flux surface, we know 
the volume VW contained. The value of # at the boundary, &, , is therefore specihed 
implicitly: it satisfies 

(87) 

The numerical procedure for solving Eq. (83) is as follows. I’(#) is assumed known, 
therefore K and (l/r2) are available as functions of #. The equation is linearized 
about the assumed V(#), and represented by a tridiagonal difference equation for 
SV(#), the deviation from the assumed V. Q& is found from the linearized solution, 
using Eq. (87). V(#) is updated and the process repeated until 6 V becomes negligible. 

These considerations suggest an algorithm for solving the 1D and 2D equations 
consistently. Replace D/Dt by its difference analogue, and begin an iterative scheme 
by assuming values for the functionsf, ( l/r2>, and K, namely those from the previous 
timestep. 

Step A: With f, ( l/r2), and K known, Eq. (83) is the desired auxilliary equation 
specifying I”(#, t) and & . 

Step B: The solution of this equation gives the required information for the solution 
of the ID set, Eqs. (75)-(78) and their end point forms, using Eqs. (29)-(31), and (44) 
for the transport terms. 
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Step C: The solution of these equations gives us P, , Pi, and f at the new time. 
These functions specify the source terms for the 2D equation. The boundary value 
&, is known from step A. The solution of this equation gives the shapes of the flux 
surfaces at the new time, and hence updated values of the shape-dependent functions 
<l/P> and K. Steps A, B, and C are repeated until the volume V($) calculated at C is 
sufficiently close to that calculated at step A. 

VI. EXAMPLES 

We will use as an example problem the calculation of the evolution of a large 
tokamak of elliptical outer cross section. The ellipse that defines the outer flux surface 
is centered 140 cm from the major axis, and is 45 by 45 2/2 cm. The applied toroidal 
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FIG. 4. Flux;andicurrent contours at t = 0. 
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field is 32 kG at 140 cm. The plasma has Z = 1.6 and Z2/P = 4. When the calculation 
begins the temperature of ions and of electrons is a uniform 50 eV, and the density 
increases almost parabolically from 4 x 1013 at the wall to 2 x 1Or4 at the center, 
with 145 kA of current. The current is distributed as a linear function of the distance r 
from the major radius. Figure 4a is a plot of the initial flux surfaces # = constant, 
and Figure 4b is a plot of the initial current contours j = constant, with higher 
numbers indicating higher current values. The axis of symmetry is on the left in these 
and subsequent plots. 

The current is programmed to rise linearly in time to 600 kA at 0.1 seconds, then 
remain at that value. The calculation is carried out to 0.5 seconds. The wall tempera- 
tures are held at 50 eV, and the wall density at 4 x 1013. 

The first thing that one notices happening is that the current rapidly diffuses from 
its initial distribution towards uniformity. Figure 5a shows the flux surfaces and 
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FIG. 5. Flux and current contours at t = 3 x lo-&. 
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Figure 5b the current contours at 10 cycles; problem time 3 x IO-* sec. Figures 6a 
and 6b show the flux and current at 20 cycles, t = 2.2 x 1O-3 seconds, when the total 
current is still only 154 kA and the central temperature is, at 52 eV, almost unchanged. 
The flux surfaces are almost unchanged, retaining their initial 7 cm off-center shift. 
(Of course, Ampere’s law is satisfied, but the changes in j, are seen more easily than 
those in zj since& involves second derivatives.) 
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LEVEL 2 = I.605E+OI 
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LEVEL 4 = 2.016E+OI 
LEVEL 5 = 2.679E*Ol 

FIG. 6. Flux and current contours at I = 2.2 x 10-3. 

The current continues to increase and the plasma to heat. At cycle 220, 
t = .I1 seconds, the full 600 kA is in the plasma, and the central temperature has 
risen to 255 eV. The central density has dropped to 1.59 x 1014, though the particle 
confinement time, n/dn/dt, for the whole tokamak is 2.1 seconds. Figures 7a and 7b 
show the flux surfaces and current at this time. Notice that the current is peaked 
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FIG. 7. Flux and current contours at t = 0.11. 

toward the axis of the machine, and this has caused the flux surfaces to become more 
nearly centered; the off-center shift is now only 3 cm. 

As the calculation proceeds the current tends to channel towards the center of the 
ellipse with the increase in the central temperature. At 0.5 seconds the contours of 
Figure 8a show the magnetic axis now 4.3 cm shifted, the flux surfaces tending toward 
circularity in the mid-regions, and the current peaked in the center. The safety factor 
q is 2.9 at the center, rising to 6.3 at the wall. The central density is 1.6 x 1014, the 
temperature is 544 eV, and the energy cotinement time is 75 msec. These results are 
of course strongly dependent on the fact that Pfirsch-Schltiter transport has been 
assumed. Other models, for instance trapped particle modes, give transport coeffi- 
cients order of magnitude larger than those used in these runs and shorter confine- 
ment times. 

Those results were obtained by using 26 poloidal zones (because of symmetry only 
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13 are meaningful) and 21 radial (on the average, since the number can change). It is 
of interest to examine the sensitivity of the results to zoning. For this purpose we ran 
a series of four problems using the “1D” option discussed above: the geometry is 
given by tables which are calculated only once rather than being updated by the 
results of the 2D equilibrium solver. Another problem was run using 6, 11, 20 and 
40 radial zones. The resulting histories of the central temperature are presented in 
Figure 9 for 6, 11 and 20 zones (the 40 zone case overlays the 20 zone case). It would 
appear 11 zones suffice for this problem, and in fact the plots of temperature vs. radius 
at 0.5 seconds, presented as Figure 10, show that the profiles, too, are reasonably 
well determined by 11 zones. 

Finally, let us examine the necessity for a 2D code. The same problem was run in 
both 1D (static geometry) and 2D modes. Figure 11 plots temperature/time and 
Figure 12 temperature/radius at 3 second. Figure 12 plots the temperatures from the 
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magnetic axis to the wall. It can be seen that a major difference between the 1D and 
the 2D results is the location of this axis, assumed to be in the geometric center for 
the ID run. Its actual location was calculated in the 2D run. 

VII. CONCLUSION 

We have outlined and demonstrated a new technique for solving the tokamak 
diffusion problem. The technique is based on following the flux surfaces with a 
coordinate system so that # remains constant on one coordinate. The transport is 
now that of Pfirsch and Schhiter, but the code can easily be modified to fit other 
regimes. The technique has proven to be both fast and accurate. 

The G2M code is useful for modelling tokamaks for which a two dimensional 
description is required, such as those with a small aspect ratio or a noncircular cross 
section. The code is to our knowledge unique among existing 2D tokamak transport 
codes in that it calculates both toroidal and poloidal flux (from Faraday’s law) and 
thus conserves both. Because of this the code will be a valuable tool in the investiga- 
tion of the recently proposed “flux conserving” high beta tokamak [24]. * 

APPENDIX A 
DERIVATION OF THE 1D CONSERVATION LAWS 

We will be interested in the time rate of change of flux surface integrals of some 
arbitrary quantity A. If v, is the grid velocity, then the rules of differentiation tell us 

d *,(t) ti,(t) 

Tt J’ss 
A d3X = 

I ,w JJ + ,(t) 
(A + V - Av,) d3X 

We may do the surface integrals first, to find 

(AlI 

WI 

Since (A) V’ are functions of # and t, 

G43) 
d 

1;1:’ <A) V” d$ = ,,“;:;’ D’;; ” d$ + (A) V’$ Iti” - (A) V’$ loi z 1 2 

We may do the surface integrals on the right-hand side of Eq. Al 

d 
2i 

j-j-j- A d3X = sti” ((A) V’ + $ (Av, * vV>) d$ 
*I 
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Combining, 

Since $r and z,& are arbitrary, the integrand must vanish: 

D(A) V’ . a 
Dt 

= (A> V’ + alb (Av, * VV) 

Now substitute II for A: 

DnV’ a 
__ = (li) V’ + alCI (nv4 - VV) 

Dt 

Using Eq. (1) for n, 

DnV’ a 
Dt + q ((r - r,) * VV) = (S> V’ 

645) 

046) 

647) 

W) 

The energy equations are only a bit more difficult to find. The terms in Q, Q,, , and 
R are simple, as is the E . B part of j * E, so consider the truncated equation 

649) 

We find from Eq. A6 

Using Eq. A9 for P 

3 DPV’ --= -V’(;V+TT)+ V’(v,.VP)++(;Pv,*W) (All) 
2 Dt 

Finally, from Eq. A6 for (DV’/Dt) 

3 DPV’ 
--= -;+cTr,4V)-P~ 
2 Dt 6412) 

This is the desired result, 
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